
This is na tura l  s ince cont rac t ing  fo rces  act on the lower  half  of  the ends of the beam.  However ,  when 
the load p a r a m e t e r  is inc reased  fur ther  the value of cr+ becomes  posi t ive - a s t r e t ch ing  region occurs  due to 
s l ip along the line L (curve 2, Fig. 4, ~ =  0.13and 77 =0.5). S imi la r  behav ior  of the s t r e s s e s  is obse~ced in 
the upper  half  of the b e a m  (see Fig. 4). Note that  the var ia t iona l  formula t ions  of the boundary-va lue  p ro b l ems  
[2] and the a lgor i thm cons idered  can a lso  be  used to solve p rob lems  on the development  of  c r acks  in no rma l  
f rac tu re .  

The author thanks E. I. Shemyakin and A. F. Revuzhenko for the i r  in teres t  and useful comment s .  
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The p rob l em of s imula t ing  the dynamic behav ior  of an a x i s y m m e t r i c a l  blank for  explosive forming under 
plane s t r e s s e d  s ta te  conditions with r igid fas tening or  hinged res t  on a contour  is cons idered  in a number  of 
paper s  [1-4] (a detai led bibl iography is given in [5]), and in [6] a method is descr ibed  for  de termining  the dy- 
namic  behavior  of thin nonax i symmet r i ca l  shel ls  of ideally plas t ic  ma t e r i a l  deformat ional ly  hardened and s en s i -  
t i r e  to the r a t e  of deformat ion  for  the boundary conditions descr ibed  above. In this  paper  we desc r ibe  a method 
for  the  numer i ca l  calculat ion of the dynamic behav ior  of nonax i symmet r i ca l  blanks of complex  configuration.  
Unlike publications where  p rob lems  unrela ted  to p rac t i ce  a r e  solved,  he re  we s imula te  the p roce s s  of f o r m i n g -  
d rawing , tak ing in to  account  both the d isp lacement  of the  flange par t  of the blank and the fo rces  of  fr ict ion which 
occur  on the flange par t  of  the blank during h igh-speed  deformation.  In addition, as a resu l t  of  an opt imizat ional  
s e a r c h  the op t imum external  load applied to the blank is de te rmined ,  which enables the values and posi t ions of 
the cha rges  requ i red  to de fo rm it to be found. 

1. The s y s t e m  of different ial  equations descr ib ing  the motion of a blank (more  accu ra t e ly  a Lagrange  
network,  connected with its middle surface)  can be wri t ten exact ly  as in [5] and can be solved in explicit  f o r m  
using the method of finite d i f fe rences  [7]. It tu rns  out that  the f in i te -d i f fe rence  model is sens i t ive  to the in tegra-  
tion s tep  in t ime .  In addition, the s tabi l i ty  of the d i f ference  scheme  depends on the initial value of the cel l  of 
the integrat ion network. Accord ing  to [8], the upper  boundary  of the integrat ion s tep in t i m e  is exp re s sed  in the 
f o r m  

At = 2/COmax) 

where  COma x is the highest  e igenfrequeney of the co r respond ing  f in i te -d i f fe rence  model.  However ,  solving 
p rob lems  it is e x t r e m e l y  inconvenient to de t e rmine  in advance the f requency COma x cor responding  to each spec i -  
fic f in i te -d i f fe rence  model.  Hence,  to de te rmine  At one can use the  condition [5] 

At ~< AXmin(p(t - -  ~2)/E)V~ 

where  ~Xmi  n is the value of the  cel l  of the network,  p is the densi ty of the m a t e r i a l  of the blank, y is Poisson,s  
ra t io ,  and E is Young's modulus.  When in tegra t ing  the equations at each subsequent  instant of t i m e  one de t e r -  
mines  the d i sp lacement  of the junction points of the Lagrange  network. If at the initial instant of t ime  t = 0 we 
wr i te  the equation of motion 

F j -**i n,,, = O Y ~ , ,  

Kharkov.  T rans l a t ed  f r o m  Zhurnal  Pr ikladnoi  Mekhaniki i Tekhnicheskoi  Fiziki ,  No. 2, pp. 165-175, 
March -Apr i l ,  1979. Or ig inal  a r t i c le  submit ted  March  20, 1978. 
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where  FJmn a r e  the pro jec t ions  of  the fo rces  reduced to the junction point ran, ; ~ L  a r e  the project ions  of the 
acce l e r a t i ons  of  the junction points of the network,  ~ is the reduced m a s s  of a junction point, de te rmined  f r o m  
the equation 

7 = ps,: 

where  5 is the  th ickness  of  the blank,  the inc rement  in the d isp lacement  at any subsequent  instant of t ime  is 
found f r o m  the  Ta y l o r  expansion 

(AY~n)i+t ~ (AY~)~ + ( Y ~ ) ,  (At)S,wh~re(Ay~)~ = (AIr~) i  (At). 

The g e o m e t r y  of the  blank iS defined in t e r m s  of the bas i s  vec to r s  

= CrY) ij,  

where  ij a r e  the or thogonal  bas i s  vec to r s  of a Car t e s i an  coordinate  s y s t e m  YJ, while 

(Y~)~" = (OV/OX~) , ,~ . , .  (1.1) 

Here close to the boundaries the "forward" or "backward ~ differences are used, while inside the blank the 
,central" differences are used, where in the case considered for a rectangle in the plan of the blank thebound- 
aries coincide with X i-- 1 .... , IVI, X2= i,..., N, where m and n are the numbers of the junction points of the 
Lagrange network, and M and N are its maximum dimensions. 

We will further determine the metric tensors, their determinants, the curvature tensors, the directions 

of the normals, and alsothe increments in the components of the deformation tensor 

~sn+~ 0.5[(A~h+~ --  'A ,~,1 X ~ r , ,  , - -  ' B  , , , ,a  \ ~ ] i  l - -  L\Oc*p]i+l--k a~Ji  ], 

where  (/karl) nm and (Bail) mn a re  the m e t r i c  t e n s o r s  and the cu rva tu re  t e n s o r s ,  and ~ and/~ take the values 1 
and 2. 

Knowing the inc rement  in the  deformat ion  at each s tep  and the t i m e  during which it is obtained, we find 
the r a t e  of de format ion  

�9 mT~ 

and the  intensi t ies  of the  r a t e s  of  deformat ion  
21/2 " m n  2 " m n  2 " m n  2 " m n  " m n  + + + 

for  tak ing  into account  both the de format iona l  hardening  and the  sensitivEty of the  m a t e r i a l  of the blank to the 
r a t e  of  deformat ion  [9] in t e r m s  of a s d  = as0[1 + ( ~ m n / D ) l / ~ ]  where  as0 is the  yield point of the m a t e r i a l  for  
s ta t ic  loading,  and D and X a r e  cons tants  of the m a t e r i a l  de te rmined  exper imenta l ly .  

In view of  the  fact  that  s imula t ion  of the  explos ive  fo rming  p r o c e s s  is  c a r r i e d  out mainly  for thin b lanks ,  
K i r c h n o f f ' s h y p o t h e s e s  a re  comple te ly  appl icable;  namely:  1) the n o r m a l  Nmn r e m a i n s  no rma l  a lso  to the de- 
f o rmed  middle  su r f ace  of the  blank,  2) in the d i rec t ion of this normal  t he r e  is no deformat ion ,  although in the 
final ana lys i s  thinning of the  blank is de te rmined  f r o m  the law of conserva t ion  of volume for  each e l emen ta ry  
cel l ,  and 3) deformat ion  of the  t r a n s v e r s e  shift is ze ro .  Although a change in the  deformat ion  along the th ick-  
ne s s  of  a shel l  is a l so  taken in accordance  with Ki rc tmoff ' s  assumpt ion ,  t he i r  calcula t ion is c a r r i e d  out for  each 
l a y e r  sepa ra t e ly .  In th i s  ca se  the choice  of four  l a y e r s  [5] ove r  the th ickness  of the blank (where the m a t e r i a l  
is concent ra ted) ,  Which works  for  the  plane s t r e s s e d  s ta te ,  is the opt imum.  These  l a y e r s  a re  s i tuated at 
the s a m e  dis tance  f r o m  one another  and a r e  s e p a r a t e d  by m a t e r i a l  which cannot ope ra te  under  conditions of a 
plane s t r e s s e d  s ta te  in a plane tangent ia l  to the shel l ,  but which p o s s e s s e s  an infinitely l a rge  r igidi ty to shea r  
in a t r a n s v e r s e  direct ion.  

When de te rmin ing  the  i n c r e m e n t s  of  deformat ion  it is convenient  to divide the l a t t e r  into e las t ic  and p las -  

tic components  [10]: 

In Ca r t e s i an  coord ina tes  YJ the increment  in s t r e s s  in t e r m s  of the  e las t ic  component  of the  increment  in 

deformat ion  is given by the following equations:  

A~i ----- E (As~i + vAe22)/(i -- v~), 

A%s = E (A8~2 + vAe~,)/(l - -  vs), h ~  = Ehs~2/(l + ~). 
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The yield condition is bes t  used in the M i s e s - H e n c k y  fo rm 
(~) Y . mn ~ 2 - -  3J2 ' (1.2) ran,, = - -  ( ( l s d ) m n ,  i = 0, 

where  0 Ymn,i is the yield function, and J m n ' l i s t h e  second invar ian t  of the s t r e s s  devia tor .  In our  ease  
Eq.  (1.2) t akes  the fo rm 

f~Ymn,i (~ran (yran mn mn mn 2 ((~ran "~ 2 mn 2 
----- - -  l l , i  22,i "~ 30r12,i(121,i "~- (Oi l , i )  ~-  \ 22,i] - -  ((/sd,') �9 ( 1 .3 )  

For  an absolutely e l a s t i c - p l a s t i c  m a t e r i a l  the p las t ic  components  of the deformat ion  increment  t ensor  a r e  
re la ted  to the s t r e s s e s  in t e r m s  of the flow law, which, accord ing  to the t heo ry  of p las t ic  potential  [11], can be 
e x p r e s s e d  in the f o r m  

AsPf~ ran t "ranolYPY "Or ran'i Ui ran, i t  r ,t 

where  ~ a m  is a posi t ive  constant  found f r o m  Eq. (1.3) by subst i tut ing into the l a t t e r  the values  of the s t r e s s e s  
obtained taking into account the e las t ic  and plas t ic  components  of the deformat ion  t enso r .  At each i s tep,  if 
there  is plast ic  flow inside the region of values of  l imi t ing deformat ions ,  the end of the s t r e s s  vec tor  r e tu rns  
to the yield su r f ace  ~Y �9 1Tin, P 

After  de te rmin ing  the s t r e s s e s  (for each layer)  we calcula te  the values of  the m e m b r a n e  fo rces  I-I~ffa i 
and the bending momen t s  I ~  i for  each junction point in the initial nondeformed Car tes ian  s y s t e m  of coor'di- 
nates  in the s a m e  way as for  t!~e components  of  the deformat ion  increments :  

0,55 0,55 

(~ran,ji ran,~, ~ Oran,i-4"ran, i tt 'aran, i" 
"-0,55 --0,55 

The integrat ion is bes t  of all  c a r r i e d  out using G a u s s ' s  quadra ture  fo rmulas  using s tandard  subrout ines  
of  the type descr ibed  in [12]. 

The equation of equi l ibr ium for  the moment s  can be wri t ten in the f o r m  

, Lra.,~ + = Ora.,~, 

where  Q~am,i is the cutoff  fo rce  e x p r e s s e d  in the b racke t s  - the Chr is tof fe l  symbols  of the second IOnd 

For  a = 1 Eq. (1.4) t akes  the f o r m  

Q~,~,~ l~ l l (OA~'~'I/OXO L~,~ i + = OLra,~,~/OXm.,i + Arar~,~" 

-~- . . . . .  " Lra,~,i + Ara,~,~. (OAt /OX ) L . . . .  ~ + 

ra..i ~ ,2 n '  . (one .  cOX ~ ) •  + Ara,~ A �9 (OA.~ /OX ) Lra,~.~ + OL~n,~/OX ~ + . . . . .  �9 , 

~2 a~n , i .  (OA~n' i /OX z) Lra,~.~ + amn, i" • • Lran,i + 22 2 ( o a T n ,  i / o x 2 )  

~' ~ (OA'~'~'~/OX ~) L k ~  ~. (1.5) • Lra,,~ + A~.,i" 

S imi la r ly  for  a =2. If the network is nonuniform, in Eq. (1.5) instead of 3X I and 3X 2 we must  wr i te  OX~a 
and 3Xn 2. The finite d i f ference  rep resen ta t ion  of Eq. (1.4) is cons t ruc ted  in the s a m e  way as for (1.1). 

Knowing the m e m b r a n e  f o r c e s ,  the  bending  m o m e n t s ,  and the  cutof f  f o r c e s  the a c c e l e r a t i o n  of  the  junct ion 
points of the network can be found f r o m  the equations of motion [5] 

- Q~,~,~ Bj~ ..... ~ + Fra.,~ + 0 a.,.,,. = ~'P'~,,,~ 
H,~ ~ra-,i F 3 . = ~-~.a .... ~.-,~ + v~Q~m,,,~ + . . . .  P ra,,,. 

which, a f ter  some  s imple  reduct ion,  give 

[ /' " ( ] "  i i 

Imn,  i = A ~  - A T  OC~,~,~/OX~ + A[~ vJ . . . .  ~ 

where  Amn,0 and Amn,i  a r e  the de te rminan ts  of the m e t r i c  t e n s o r s ,  and C ,i is the s u r f a c e - s p a c e  t enso r  
defined f r o m  the equation 

C~ . H ~ . y i  N i ran,, = ran,, o: . . . .  ~ + Q~,~.i ra,~,,, 

where  NJmn,i a re  the projec t ions  of the n o r m a l  onto the  junction point ran. 
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TABLE 1 

~mnl 
t 3 1 4  5 1 6 1 7  8 1 9  iO 11 12 

0 
0 
0 
0 
0 
0 

7 0 
8 0 

2 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0,692 0,733 
0 0 0,703 0,750 
0 0 0,730 0,772 
0 0 0,733 0,782 
0 0 0,733 0,782 

~176 0 0 
0 0 
0,772 0,8i4 
0,794 ] 0,831 

o,8,31o,856 
0,822 [ 0,870 

0,822 t 0,870 

~176 0 0 
0 O 
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After calculating the accelerations Y~m,i the increments of the displacements and the new positions of 

the Lagrange networks are found, and the calculation procedure is repeated cyclically. 

2. As was pointed out in [3, 4], when simulating the dynamic behavior of the blank during formLng- 
drawEng, neglect of the forces of friction on the flange part of the blank introduces considerable error' into the 
calculation. In this paper this drawback is eliminated using the hydrodynamic theory of friction. Here the 
force of friction is defined by Petrov,s formula [13] 

G = ~frs ~l(h + ~1~1 + ~/~),: 

where 77 is the viscosity of the lubricating layer ,  YS is the rate of slip, S is the area of the flange par~: of the 
blank, h is the thickness of the lubrication layer,  and pl and p2 are the coefficients of the external friction of 
the lubrication and of the slipping surface. 

When the lubrication and the slipping surfaces of the blank and the matrix have high adsorption properties,  
the quantities Y//~I and ~/p2 can be neglected [13]. Equation (2.1) then takes the form 

G = ~IY s Slh. 

If the flange part of the blank has pq junction points we have 

( G S  -- 

where (Gpq) i+t is the force of friction applied from both sides to the junction pq, Spq is the area of the cell, and 
('{ZJpq) is the rate of displacement of the junction point. 

3. The main question considered ha problems of expIosive forming is the problem of the external load 
applied impulsively to the blank. In [14] the semiinverse problem of the deformation, consisting of determining 
the form of the initial applied pulse with respect  ~o a specified finite configuration of an axisymmetrioal shell, 
is considered. Unlike the problem considered in the semiinverse formulation, ~, the present paper the external 
load necessary to form nonaxisymmetrical components of complex configuration is determined by the method of 
optimizationaI search. In this ease the haitial shape of the bIank is plane, a cylinder, or a cone of constant 
thickness, if the first  transit ion of deformation is simulated, or any complex spatial shape with a eertaha thick- 
ness distribution when simulating subsequent trans itions. 
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Suppose the initial impulse applied to the blank is wri t ten in the fo rm 

m = M  n ~ N  i = k  

I o =  Y, ~ ~ Fm.i'At. 
m = l  n = i  i = l  

where  Finn i is the force  reduced  to the junction point of the network of the middle sur face  of the blank. 

Applying the initial impulse I 0 to the deformed blank using the method descr ibed  in Sees.  1 and 2, we 
will s imula te  its dynamic behavior  and de te rmine  the final buckling of the blank. Now, knowing the final buck- 
ling Of the blank and the prof i le  of the mat r ix ,  we set  up the quadratic Gauss functional 

~ t ~ M  n = N  

r (I0) = ~ :~ (Nm.)',: (3.1) 
m = l  n ~ l  

where  Nmn is the length of the normal  f rom the Inn ]unction point to the sur face  of the mat r ix ,  de termined  
f rom  the re la t ion 

N . .  (z.) = [ ( N ~ . )  2 + (N~. )  2 + (N~. )  2 

The prob lem of de termining the externa l  load now reduces  to minimizing the functional (3.1) on the 
family of curves  I (F,  t ) .  We will use Newton's method for  this purpose [15] with a modification when de te rmin-  
hag the d isplacement  in the d i rec t ion of the optimum point at  each step.  To simplify the solution we will a ssume 
that 

At~ = At = eonst,: 

when the direct ion of s ea rch  is defined only with r e spec t  to Fmn i. If we denote by A F ~ n  i the increment  of the 
force  F~nni at the mn ]unction point of the Lag-range network at the i - th  instant of t ime at the ~-th i terat ion 
step,  we have 

Here  and hencefor th  the index ~ will denote the i terat ion step. We expand the functional in a Tay lor  se r i e s  and 
neglecting t e r m s  of the th i rd  and higher  o r d e r s ,  we wr i te  

r (F~+I) = r (F~.~) + VYr (F~.3 AF~,,i -t- 0,5 (AF~,n)Yv"-F (F~,,i)" AFOul, 

where  vYF(F~mn i) is the  t r ansposed  ma t r ix  of the gradients  of the f i r s t  o r d e r  

~r (EL3 
vr  (FL3  = II ~ I/; 

v2F(F~mni) is the cubic ma t r ix  of the second par t ia l  der ivat ives  

v"r  (F},,,,) : l! v?:,r ( F L 3  I1, 

where  V2rnnF(F~mni) is defined by the ma t r ix  

] 0F~l ~ 0F~,~ t 

The minimum of the functional in the direct ion AF~nni is de termined by differentiat ing F(F~mn i) with 
r e spec t  to each of the components  AF~mn i and equating the express ions  obtained to zero.  This leads to 

AF;~ _ [v2F : -1 ; (3.3) 

We will express  the quantity 17~ +~ f rom Eq. (3.2) and substi tute the value of AF~mn i f rom (3.3). We finally -r tmi 
obtain 

= - -  (F ~ , ) .  (3.4) F ;+~"~ F; ~,,- [v2F (F~.i)] - l "  V r ; 

In Eq. (3.4) the opera t ion of ma t r ix  invers ion  is present ,  which can conveniently be ca r r i ed  out using s tandard 
lYffNV subroutines [12], s ince we must ensure  that it is posi t ive-def in i te .  In this ease ,  when it is not pos i t ive-  
definite (such si tuations may a r i s e  in special  cases) ,  some authors  assume additional t rans format ions  making 
the inverse  ma t r ix  pos i t ive-def in i te  at each step of the minimizat ion  [16]. 

We wilt not cons ider  the optimizat ional  sea rch  in the direct ion At i in this vers ion  since in this case  to 
ensure  s imi la r i ty  of the impulsive action it is n e c e s s a r y  to impose special  l imitat ions on the value of the step 
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with r e spec t  to Ati, o therwise  it acqui res  a c h a r a c t e r  which it is imposs ib le  to ensure  for  any conditions of  
explosive deformation�9 

4. To check the theo re t i ca l  as sumpt ions  r ega rd ing  this  method we compi led  a FORTRAN p r o g r a m  and c a r -  
r i ed  out a numer i ca l  s imulat ion of the f i r s t  t r ans i t ion  of explosive fo rming  of a component  of the box type on 
the ES-1020 and ES-1033 compute r s .  The blank was chosen to be a plane plate of r ec tangu la r  shape in plan 
with dimensions  220 • 140 x2 .0  m m  3 of AMg2-M a luminum alloy. A uniform grid with a s tep of 10 m m  covered  
the whole plane of the blank. Although the p rob l em cons idered  in this case  was s y m m e t r i c a l  with r e spec t  to 
the longitudinal and t r a n s v e r s e  axes  of the blank, the solution was c a r r i e d  out for  all  components ,  which 
enabled us to chock the c o r r e c t n e s s  of the solution with r e spec t  to the cor responding  p a r a m e t e r s  at s y m m e t r i -  
cal points. The main initial data was as follows: yield s t r e s s  as0 =7 .85 .10  ~ Pc, Young's  modulus  E = 6.97" 
10 l~ Pc,  Po i s son ' s  ra t io  v =0.33, deformat ional  s t rength  indices ~ =0.996, w=0.15 ,  k inemat ic  s t rength  indices 
D=5.62 �9 106 sec  -1, ~ =3.75, l imit  dynamic deformat ion  r =33%, and coefficient of dynamic v i scos i ty  of the lubr i -  
cat ing l aye r  ~? = 800 1 ). Because  of the fact that  the fo rces  of  fr ict ion [13] a r i s i ng  on the cons t r i c ted  r ib  of the 
ma t r ix  exceed the value of the fo rces  of fr ict ion on the plane of the flange by a fac tor  of 3 on the average ,  in the 
s imulat ion they were  inc reased  by a specif ied amount compared  with the theore t ica l  value and were  applied to 
the junction points c loses t  to the cons t r ic ted  rib.  The externa l  load applied to the deformed blank was found by 
exper iment  when blas t ing  a spher ica l  charge  of explosive c lose  to the r ig id  boundary su r faces .  

Table  1 shows values of the externa l  load at the f i r s t  instant of  t ime  for the fourth deformed blank. For  
convenience the fo rces  Finn t acting at an a r b i t r a r y  junction point of the blank a re  exp re s sed  in f rac t ions  of 
the load applied at the cen t ra l  point of the blank F1281: 

Finn1 = Fmnl/F12 s 1,. F12 s 1 = 39MPa. 

The change in the forces  with t i m e  for  the cent ra l  point is shown in Table  2, where  

F12 si ---- FI~ 8i/Fl281. 

At the r ema in ing  points of the blank the change of the load is the same.  

Figure  1 i l lus t ra tes  the posit ion both of points of the fo rmed  blank lying in the longitudinal plane of s y m -  
m e t r y  (the upper  par t ) ,  at d i sc re t e  instants of t ime ,  and at points lying on the boundary of the flange part ;  the 
continuous l ines r e p r e s e n t  the r e su l t s  of exper imenta l  invest igat ions,  and the dashed lines the resu l t s  of 
numer i ca l  s imulat ion.  We indicate co r respond ing  instants of t i m e  f r o m  the beginning of d isp lacement  (for the 
exper iment :  0, 380, 500, 580, 640,780 psec)  and f r o m  the beginning of the calculat ion (for the numer i ca l  s imu-  
lation: 0 ,380 ,  500, 580, and 780 psec) .  Similar  graphs  for  points lying in the t r a n s v e r s e  plane of sym]metry 
a r e  shown in Fig. 2. For  different  instants  of t ime  they a r e  spaced,  s ince,  as numer ica l  s imulat ion and sub- 
sequent expe r imen t s  showed, t he r e  is a cons iderab le  d isp lacement  of the external  edge of the blank f r o m  the 
l a r g e r  of i ts  s ides ,  whereas  no d isp lacement  was obse rved  f r o m  the s m a l l e r  of its s ides .  The d i sp lacements  
of the cen t ra l  point of the blank (point A in Figs.  1 and 2) as a function of t ime  a re  shown in Fig. 3, l ines 1 
showing the theore t i ca l  d i sp lacements  obtained by numer i ca l  s imulat ion,  and l ines 2 the r e su l t s  of exper iment ;  
it can be seen that  the exper imenta l  curve ,  unlike the theore t ica l  curve ,  despi te  the sa t i s f ac to ry  overa l l  a g r e e -  
ment ,  has a number  of f ea tu res  in the f o r m  of weak bends.  The calcula ted nature  of the motion is s imi l a r  to 
that  given in [17], but does not have s ingular i t ies .  Because  of the fact that  the externa l  load in the exper imenta l  
par t  of the work  was genera ted  in the region of r igid boundary su r f aces ,  he re  the re  is a double loading of the 
moving blank: the f i r s t  t ime  by the hydroflow when the gaseous  cavi ty  expands,  and the second due to Lhe action 
of the jet when the cavi ty  co l lapses  [18]. Best  r e su l t s  with r e spec t  to values  of the final bucklings a r e  achieved 
when the spat ia l  gr id is finely divided c lose  to the cons t r i c ted  r ib (X~n4, X~t2,~ X~n, X220n) 

Figure  4 shows the dependence of the longitudinal and t r a n s v e r s e  deformat ions  on the t ime  in the region 
of points A and B (see Figs.  1 and 2) Here  cu rve  1 is for  gA, c u r v e 2  is for  eA �9 22, curve  3 is for  ~B, and curve  
4 is for  ~ B, and the points denote the final s ta tes  of the exper iment .  As can be seen f r o m  the g raphs ,  the in- 
c r e a s e  in the deformat ions  occurs  smoothly ,  s i m i l a r  to the inc rease  in the d i sp lacements  of the cent rM point 
of  the blank. In this ca se  the inc rease  in the deformat ions  at the point B occurs  m o r e  intensively than at point 
A, which indicates the di rect ion of motion of the plas t ic  wave f r o m  the flange to the center  of the blank. A 
numer ica l  calculat ion was made  up to the instant when the blank s tops (450 s teps  in t ime);  the s imulat ion t ime  
was 56 minutes  on the ES-1033 computer .  It is poss ib le  to reduce  the calculat ion t i m e  byus ing  the s y m m e t r y  
of the blank,  and, in addition, on compute r s  with an inc reased  m e m o r y  it is poss ib le  to reduce  the t ime  taken in 
the repe t i t ive  c a r r y i n g  out of ce r t a in  p r o g r a m s  connected with de te rmin ing  the der iva t ives  with r e spec t  to the 
spat ia l  coordina tes .  It should be noted that  unlike the s t a tement  made in [5] r ega rd ing  the possibi l i ty  of c a r r y -  
Lug out the calculat ion with the usual a ccu racy  during numer i ca l  s imulat ion when de te rmin ing  the bas is  vec to r s  
and o ther  e lements  of d i f ferent ia l  gebme t ry ,  and also the  par t ia l  de r iva t ives  in f in i te -d i f fe rence  fo rm,  the need 

255 



ar ises  to use double accuracy (up to the sixteenth decimal place), since calculations with the usual accuracy 
lead to considerable e r r o r  accumulation and inadmissible e r r o r s  in calculation already by,he hundredth step. The 
increase in the e r r o r  progressed when simulating the f irs t  transitions of the stamping, particularly when the 
blank was a flat plate. 

The resul ts  of the optimizational search car r ied  out using the algorithm proposed in Sec. 3 are 
shown in Figs. 5 and 6. In this case the initial pulse applied to the blank at the f i rs t  step of the iteration is 
taken from Tables 1 and 2. The required final contour of the art icle determined by the surface of the matrix,  
was specified in tabular form with subsequent polynomial approximations by parts.  Figure 5 shows: 1) the 
c ross  section of the blank before forming, 2) the position of the blank after simulation of the first  transition of 
the forming as a result  of applying a load (see Tables 1 and 2), 3) the forming contour of the matrix, and 4) the 
profile of the art icle obtained due to the action of the optimum load. The profile of the l a t t e r  is shown in Fig. 6, 
where 1 is the initially applied load and 2 is the optimum force after  five iteration steps; it can be seen thatthe 
increase in the load is more intensive in the region of the constricted ribs,  part icularly in the region of junc- 
tion points, and this is completely confirmed in practice in forming block-shaped ar t ic les .  

However, as the calculations showed, an increase in the load close to the constricted ribs is only possible 
up to a certainvalue,  which depends on the radius of the constricted rib, the material  and thickness of the blank, 
and the forces of friction on the flange part. Thus, when the load is reduced in the region Xlm4, Xlm12, X~n, X~0n 
a considerable increase in the functional I'(F~rnni ) was observed due to the increase in the sum (3.1) in the region 
of the junction points. An increase in  the load in the region up to values of 1.35 led to a breakdown of the con- 
tinuity of the blank. Hence, Fig. 6 shows the limiting possible load for which, under the condition simulated, 
the plastic possibilities of the material  of the blank are  exhausted. We can therefore  conclude that it is im- 
possible to form an ar t icle  of the profile shown in Fig. 5 in a single transition. For complete forming of the 
profile it is necessary  to subject it to an impulsive action again. 
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